Adversarially Regularized Graph Autoencoder
نویسندگان
چکیده
Graph embedding is an eective method to represent graph data in a low dimensional space for graph analytics. Most existing embedding algorithms typically focus on preserving the topological structure or minimizing the reconstruction errors of graph data, but they have mostly ignored the data distribution of the latent codes from the graphs, which oen results in inferior embedding in real-world graph data. In this paper, we propose a novel adversarial graph embedding framework for graph data. e framework encodes the topological structure and node content in a graph to a compact representation, on which a decoder is trained to reconstruct the graph structure. Furthermore, the latent representation is enforced to match a prior distribution via an adversarial training scheme. To learn a robust embedding, two variants of adversarial approaches, adversarially regularized graph autoencoder (ARGA) and adversarially regularized variational graph autoencoder (ARVGA), are developed. Experimental studies on real-world graphs validate our design and demonstrate that our algorithms outperform baselines by a wide margin in link prediction, graph clustering, and graph visualization tasks.
منابع مشابه
Image Representation Learning Using Graph Regularized Auto-Encoders
It is an important task to learn a representation for images which has low dimension and preserve the valuable information in original space. At the perspective of manifold, this is conduct by using a series of local invariant mapping. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE...
متن کاملSymmetric Variational Autoencoder and Connections to Adversarial Learning
A new form of the variational autoencoder (VAE) is proposed, based on the symmetric KullbackLeibler divergence. It is demonstrated that learning of the resulting symmetric VAE (sVAE) has close connections to previously developed adversarial-learning methods. This relationship helps unify the previously distinct techniques of VAE and adversarially learning, and provides insights that allow us to...
متن کاملAutoencoder Regularized Network For Driving Style Representation Learning
In this paper, we study learning generalized driving style representations from automobile GPS trip data. We propose a novel Autoencoder Regularized deep neural Network (ARNet) and a trip encoding framework trip2vec to learn drivers’ driving styles directly from GPS records, by combining supervised and unsupervised feature learning in a unified architecture. Experiments on a challenging driver ...
متن کاملOnline Learning with Regularized Kernel for One-class Classification
This paper presents an online learning with regularized kernel based one-class extreme learning machine (ELM) classifier and is referred as “online RK-OC-ELM”. The baseline kernel hyperplane model considers whole data in a single chunk with regularized ELM approach for offline learning in case of one-class classification (OCC). Further, the basic hyper plane model is adapted in an online fashio...
متن کاملSounderfeit: Cloning a Physical Model with Conditional Adversarial Autoencoders
An adversarial autoencoder conditioned on known parameters of a physical modeling bowed string synthesizer is evaluated for use in parameter estimation and resynthesis tasks. Latent dimensions are provided to capture variance not explained by the conditional parameters. Results are compared with and without the adversarial training, and a system capable of “copying” a given parameter-signal bid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04407 شماره
صفحات -
تاریخ انتشار 2018